

MJC 3 (Comparative Anatomy)

Gastrointestinal Tract

Heterotrophs are divided into three groups on the basis of their food sources. Animals that eat plants exclusively are classified as **herbivores**; common examples include cows, horses, rabbits and sparrows. Animals that are meat-eaters, such as cats, eagles, trout, and frogs, are **carnivores**. **Omnivores** are animals that eat both plants and other animals. Humans are omnivores, as are pigs, bears, and crows.

Single-celled organisms (as well as sponges) digest their food intracellularly. Other animals digest their food

The gastrovascular cavity of *Hydra*, a coelenterate. Because there is only one opening, the mouth is also the anus, and no specialization is possible in the different regions that participate in extracellular digestion.

The one-way digestive tract of nematodes, earthworms, and vertebrates. One-way movement through the digestive tract allows different regions of the digestive system to become specialized for different functions.

extracellularly, within a digestive cavity. In this case, the digestive enzymes are released into a cavity that is continuous with the animal's external environment. In coelenterates and flatworms (such as *Planaria*), the digestive cavity has only one opening that serves as both mouth and anus. There can be no specialization within this type of digestive system, called a *gastrovascular cavity*, because every cell is exposed to all stages of food digestion. Specialization occurs when the digestive tract, or alimentary canal, has a separate mouth and anus, so that transport of food is one-way. The most primitive digestive tract is seen in nematodes (phylum Nematoda), where it is simply a tubular *gut* lined by an epithelial membrane. Earthworms (phylum Annelida) have a digestive tract specialized in different regions for the ingestion, storage, fragmentation, digestion, and absorption of food. All higher animal groups, including all vertebrates, show similar specializations.

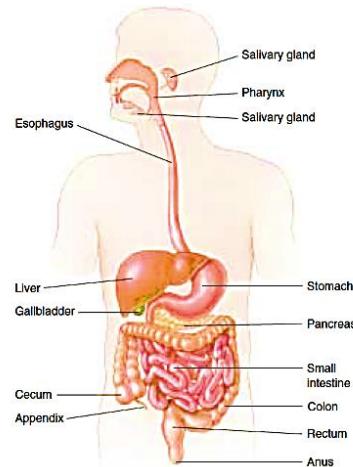
The ingested food may be stored in a specialized region of the digestive tract or may first be subjected to physical fragmentation. This fragmentation may occur through the chewing action of teeth (in the mouth of many vertebrates), or the grinding action of pebbles (in the gizzard of earthworms and birds). Chemical digestion then occurs, breaking down the larger food molecules of polysaccharides and disaccharides, fats, and proteins into their smallest subunits. Chemical digestion involves hydrolysis reactions that liberate the subunit molecules—primarily monosaccharides, amino acids, and fatty acids—from the food. These products of chemical digestion pass through the epithelial lining of the gut into the blood, in a process known as absorption. Any molecules in the food that are not absorbed cannot be used by the animal. These waste products are excreted, or defecated, from the anus.

Vertebrate Digestive Systems

In humans and other vertebrates, the digestive system consists of a tubular gastrointestinal tract and accessory digestive organs. The initial components of the gastrointestinal tract are the mouth and the pharynx, which is the common passage of the oral and nasal cavities. The pharynx leads to the esophagus, a muscular tube that delivers food to the stomach, where some preliminary digestion occurs. From the stomach, food passes to the first part of the small intestine, where a battery of digestive enzymes continues the digestive process. The products of digestion then pass across the wall of the small intestine into the bloodstream. The small intestine empties what remains into the large intestine, where water and minerals are absorbed.

In most vertebrates other than mammals, the waste products emerge from the large intestine into a cavity called the cloaca, which also receives the products of the urinary and reproductive systems. In mammals, the urogenital products are separated from the fecal material in the large intestine; the fecal material enters the rectum and is expelled through the anus.

In general, carnivores have shorter intestines for their size than do herbivores. A short intestine is adequate for a carnivore, but herbivores ingest a large amount of plant cellulose, which resists digestion. These animals have a long, convoluted small intestine. In addition, mammals called *ruminants* (such as cows) that consume grass and other vegetation have stomachs with multiple chambers, where bacteria aid in the digestion of cellulose. Other herbivores, including rabbits and horses, digest cellulose (with the aid of bacteria) in a blind pouch called the **cecum** located at the beginning of the large intestine.


The accessory digestive organs include the liver, which produces *bile* (a green solution that emulsifies fat), the gallbladder, which stores and concentrates the bile, and the pancreas. The pancreas produces *pancreatic juice*, which contains digestive enzymes and bicarbonate. Both bile and pancreatic juice are secreted into the first region of the small intestine and aid digestion. The tubular gastrointestinal tract of a vertebrate has a characteristic layered structure. The innermost layer is the mucosa, an epithelium that lines the interior of the tract (the lumen). The next major tissue layer, made of connective tissue, is called the submucosa. Just outside the submucosa is the muscularis, which consists of a double layer of smooth muscles. The muscles in the inner layer have a circular orientation, and those in the outer layer are arranged longitudinally. Another connective tissue layer, the serosa, covers the external surface of the tract. Nerves, intertwined in regions called *plexuses*, are located in the submucosa and help regulate the gastrointestinal activities.

Gastrointestinal Tract

Specializations of the digestive systems in different kinds of vertebrates reflect differences in the way these animals live. Fishes have a large pharynx with gill slits, while air-breathing vertebrates have a greatly reduced pharynx. Many vertebrates have teeth, and chewing (*mastication*) breaks up food into small particles and mixes it with fluid secretions. Birds, which lack teeth, break up food in their two-chambered stomachs. In one of these chambers, the gizzard, small pebbles ingested by the bird are churned together with the food by muscular action. This churning grinds up the seeds and other hard plant material into smaller chunks that can be digested more easily.

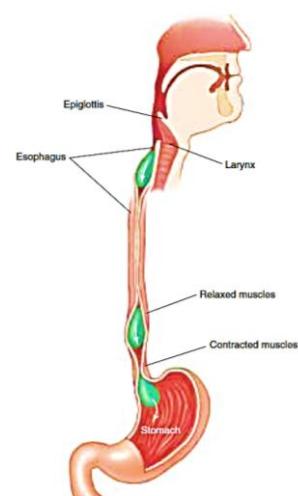
Vertebrate Teeth

Carnivorous mammals have pointed teeth that lack flat grinding surfaces. Such teeth are adapted for cutting and shearing. Carnivores often tear off pieces of their prey but have little need to chew them, because digestive enzymes can act directly on animal cells. (Recall how a cat or dog gulps down its food.) By contrast, grass-eating herbivores, such as cows and horses, must pulverize the cellulose cell walls of plant tissue before digesting it. These animals have large, flat teeth with complex ridges well-suited to grinding. Human teeth are specialized for eating both plant and animal food. Viewed simply, humans are carnivores in the front of the mouth and herbivores in the back.

The human digestive system. Humans, like all placental mammals, lack a cloaca and have a separate exit from the digestive tract through the rectum and anus.

The four front teeth in the upper and lower jaws are sharp, chisel-shaped incisors used for biting. On each side of the incisors are sharp, pointed teeth called canines (sometimes referred to as “canine” teeth), which are used for tearing food. Behind the canines are two premolars and three molars, all with flattened, ridged surfaces for grinding and crushing food. Children have only 20 teeth, but these deciduous teeth are lost during childhood and are replaced by 32 adult teeth.

The Mouth


Inside the mouth, the tongue mixes food with a mucous solution, saliva. In humans, three pairs of salivary glands secrete saliva into the mouth through ducts in the mouth’s mucosal lining. Saliva moistens and lubricates the food so that it is easier to swallow and does not abrade the tissue it passes on its way through the esophagus. Saliva also contains the hydrolytic enzyme salivary amylase, which initiates the breakdown of the polysaccharide starch into the disaccharide maltose. This digestion is usually minimal in humans, however, because most people don’t chew their food very long.

The secretions of the salivary glands are controlled by the nervous system, which in humans maintains a constant flow of about half a milliliter per minute when the mouth is empty of food. This continuous secretion keeps the mouth moist. The presence of food in the mouth triggers an increased rate of secretion, as taste-sensitive neurons in the mouth send impulses to the brain, which responds by stimulating the salivary glands. The most potent stimuli are acidic solutions; lemon juice, for example, can increase the rate of salivation eightfold. The sight, sound, or smell of food can stimulate salivation markedly in dogs, but in humans, these stimuli are much less effective than thinking or talking about food.

When food is ready to be swallowed, the tongue moves it to the back of the mouth. In mammals, the process of swallowing begins when the soft palate elevates, pushing against the back wall of the pharynx. Elevation of the soft palate seals off the nasal cavity and prevents food from entering it. Pressure against the pharynx triggers an automatic, involuntary response called a reflex. In this reflex, pressure on the pharynx stimulates neurons within its walls, which send impulses to the swallowing center in the brain. In response, electrical impulses in motor neurons stimulate muscles to contract and raise the *larynx* (voice box). This pushes the *glottis*, the opening from the larynx into the trachea (windpipe), against a flap of tissue called the *epiglottis*. These actions keep food out of the respiratory tract, directing it instead into the esophagus.

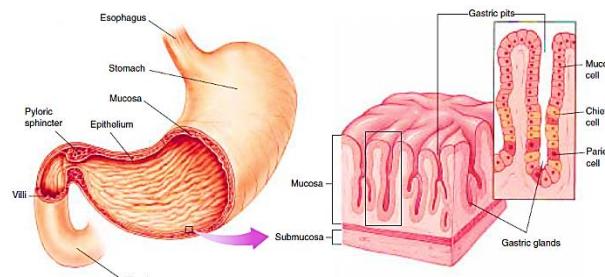
Structure and Function of the Esophagus

Swallowed food enters a muscular tube called the esophagus, which connects the pharynx to the stomach. In adult humans, the esophagus is about 25 centimeters long; the upper third is enveloped in skeletal muscle, for voluntary control of swallowing, while the lower two-thirds is surrounded by involuntary smooth muscle. The swallowing center stimulates successive waves of contraction in these muscles that move food along the esophagus to the stomach. These rhythmic waves of muscular contraction are called peristalsis; they enable humans and other vertebrates to swallow even if they are upside down. In many vertebrates, the movement of food from the esophagus into the stomach is controlled by a ring of circular smooth muscle, or a *sphincter*, that opens in response to the pressure exerted by the food. Contraction of this sphincter prevents food in the stomach from moving back into the esophagus. Rodents and

The esophagus and peristalsis. After food has entered the esophagus, rhythmic waves of muscular contraction, called peristalsis, move the food down to the stomach.

horses have a true sphincter at this site and thus cannot regurgitate, while humans lack a true sphincter and so are able to regurgitate. Normally, however, the human esophagus is closed off except during swallowing.

Structure and Function of the Stomach


The stomach is a saclike portion of the digestive tract. Its inner surface is highly convoluted, enabling it to fold up when empty and open out like an expanding balloon as it fills with food. Thus, while the human stomach has a volume of only about 50 milliliters when empty, it may expand to contain 2 to 4 liters of food when full. Carnivores that engage in sporadic gorging as an important survival strategy possess stomachs that are able to distend much more than that.

Secretory Systems

The stomach contains an extra layer of smooth muscle for churning food and mixing it with *gastric juice*, an acidic secretion of the tubular gastric glands of the mucosa. These exocrine glands contain two kinds of secretory cells: parietal cells, which secrete hydrochloric acid (HCl); and chief cells, which secrete pepsinogen, a weak protease (protein-digesting enzyme) that requires a very low pH to be active. This low pH is provided by the HCl. Activated pepsinogen molecules then cleave one another at specific sites, producing a much more active protease, pepsin. This process of secreting a relatively inactive enzyme that is then converted into a more active enzyme outside the cell prevents the chief cells from digesting themselves. It should be noted that only proteins are partially digested in the stomach—there is no significant digestion of carbohydrates or fats.

The concentration of HCl in this solution is about 10 millimolar, corresponding to a pH of 2. The low pH in the stomach helps denature food proteins, making them easier to digest, and keeps pepsin maximally active. Active pepsin hydrolyzes food proteins into shorter chains of polypeptides that are not fully digested until the mixture enters the small intestine. The mixture of partially digested food and gastric juice is called chyme. The acidic solution within the stomach also kills most of the bacteria that are ingested with the food.

Chyme leaves the stomach through the *pyloric sphincter* to enter the small intestine. This is where all terminal digestion of carbohydrates, lipids, and proteins occurs, and where the products of digestions—amino acids, glucose, and so on—are absorbed into the blood. Only some of the water in chyme and a few substances such as aspirin and alcohol are absorbed through the wall of the stomach.

The stomach and duodenum. Food enters the stomach from the esophagus. A band of smooth muscle called the pyloric sphincter controls the entrance to the duodenum, the upper part of the small intestine. The epithelial walls of the stomach are dotted with gastric pits, which contain gastric glands that secrete hydrochloric acid and the enzyme pepsinogen. The gastric glands consist of mucous cells, chief cells that secrete pepsinogen, and parietal cells that secrete HCl. Gastric pits are the openings of the gastric glands.

The Small Intestine

The capacity of the small intestine is limited, and its digestive processes take time. Consequently, efficient digestion requires that only relatively small amounts of chyme be introduced from the stomach into the small intestine at any one time. Coordination between gastric and intestinal activities is regulated by neural and hormonal signals, which we will describe in a later section. The small intestine is approximately 4.5 meters long in a living person, but is 6 meters long at autopsy when the muscles relax. The first 25 centimeters is the **duodenum**; the remainder of the small intestine is divided into the **jejunum** and the **ileum**. The duodenum receives acidic chyme from the stomach, digestive enzymes and bicarbonate from the pancreas, and bile from the liver and gallbladder.

The pancreatic juice enzymes digest larger food molecules into smaller fragments. This occurs primarily in the duodenum and jejunum. The epithelial wall of the small intestine is covered with tiny, fingerlike projections called villi. In turn, each of the epithelial cells lining the villi is covered on its apical surface (the side facing the lumen) by many foldings of the plasma membrane that form cytoplasmic extensions called *microvilli*. These are quite tiny and can be seen clearly only with an electron microscope. In a light micrograph, the microvilli resemble the bristles of a brush, and for that reason the epithelial wall of the small intestine is also called a brush border. The villi and microvilli greatly increase the surface area of the small intestine; in humans, this surface area is 300 square meters! It is over this vast surface that the products of digestion are absorbed. The microvilli also participate in digestion because a number of digestive enzymes are embedded within the epithelial cells' plasma membranes, with their active sites exposed to the chyme.

These brush border enzymes include those that hydrolyze the disaccharides lactose and sucrose, among others. Many adult humans lose the ability to produce the brush border enzyme *lactase* and therefore cannot digest lactose (milk sugar), a rather common condition called *lactose intolerance*. The brush border enzymes complete the digestive process that started with the action of the pancreatic enzymes released into the duodenum.

The Large Intestine

The large intestine, or colon, is much shorter than the small intestine, occupying approximately the last meter of the digestive tract; it is called "large" only because of its larger diameter. The small intestine empties directly into the large intestine at a junction where two vestigial structures, the cecum and the appendix, remain. No digestion takes place within the large intestine, and only about 4% of the absorption of fluids by the intestine occurs there. The large intestine is not as convoluted as the small intestine, and its inner surface has no villi. Consequently, the large intestine has less than one-thirtieth the absorptive surface area of the small intestine. Although sodium, vitamin K, and some products of bacterial metabolism are absorbed across its wall, the primary function of the large intestine is to concentrate waste material. Within it, undigested material, primarily bacterial fragments and cellulose, is compacted and stored. Many bacteria live and reproduce within the large intestine, and the excess bacteria are incorporated into the refuse material, called *feces*. Bacterial fermentation produces gas within the colon at a rate of about 500 milliliters per day. This rate increases greatly after the consumption of beans or other vegetable matter because the passage of undigested plant material (fiber) into the large intestine provides substrates for fermentation.

The human colon has evolved to process food with a relatively high fiber content. Diets that are low in fiber, which are common in the United States, result in a slower passage of food

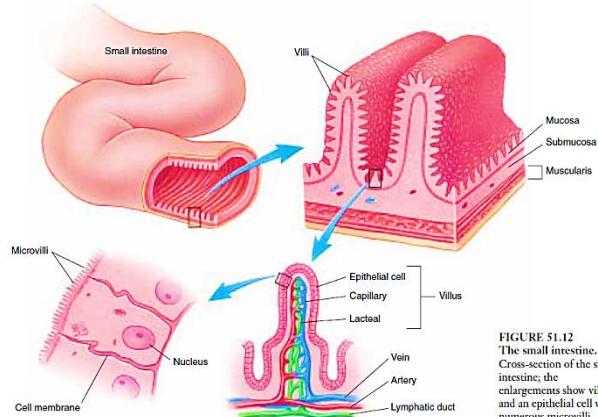
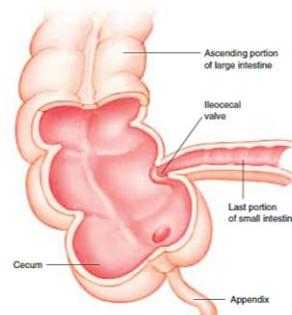
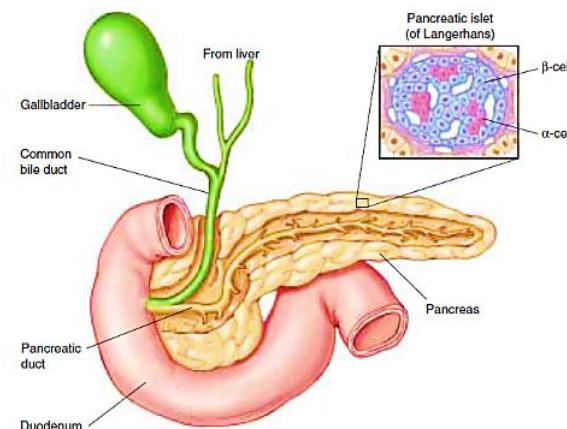



FIGURE 51.12
The small intestine. Cross-section of the small intestine; the enlargements show villi and an epithelial cell with numerous microvilli.

The junction of the small and large intestines in humans. The large intestine, or colon, starts with the cecum, which is relatively small in humans compared with that in other mammals. A vestigial structure called the appendix extends from the cecum.

through the colon. Low dietary fiber content is thought to be associated with the level of colon cancer in the United States, which is among the highest in the world. Compacted feces, driven by peristaltic contractions of the large intestine, pass from the large intestine into a short tube called the rectum. From the rectum, the feces exit the body through the anus. Two sphincters control passage through the anus. The first is composed of smooth muscle and opens involuntarily in response to pressure inside the rectum. The second, composed of striated muscle, can be controlled voluntarily by the brain, thus permitting a conscious decision to delay defecation. In all vertebrates except most mammals, the reproductive and urinary tracts empty together with the digestive tract into a common cavity, the cloaca. In some reptiles and birds, additional water from either the feces or urine may be absorbed in the cloaca before the products are expelled from the body.


Accessory Organs

Secretions of the Pancreas

The pancreas, a large gland situated near the junction of the stomach and the small intestine, is one of the accessory organs that contribute secretions to the digestive tract. Pancreatic fluid is secreted into the duodenum through the *pancreatic duct*; thus, the pancreas functions as an exocrine organ. This fluid contains a host of enzymes, including trypsin and chymotrypsin, which digest proteins; pancreatic amylase, which digests starch; and lipase, which digests fat. These enzymes are released into the duodenum primarily as inactive zymogens and are then activated by the brush border enzymes of the intestine. Pancreatic enzymes digest proteins into smaller polypeptides, polysaccharides into shorter chains of sugars, and fat into free fatty acids and other products. The digestion of these molecules is then completed by the brush border enzymes. Pancreatic fluid also contains bicarbonate, which neutralizes the HCl from the stomach and gives the chyme in the duodenum a slightly alkaline pH. The digestive enzymes and bicarbonate are produced by clusters of secretory cells known as *acini*. In addition to its exocrine role in digestion, the pancreas also functions as an endocrine gland, secreting several hormones into the blood that control the blood levels of glucose and other nutrients. These hormones are produced in the **islets of Langerhans**, clusters of endocrine cells scattered throughout the pancreas.

The Liver and Gallbladder

The liver is the largest internal organ of the body. In an adult human, the liver weighs about 1.5 kilograms and is the size of a football. The main exocrine secretion of the liver is bile, a fluid mixture consisting of *bile pigments* and *bile salts* that is delivered into the duodenum during the digestion of a meal. The bile pigments do not participate in digestion; they are waste products resulting from the liver's destruction of old red blood cells and ultimately are eliminated with the feces. If the excretion of bile pigments by the liver is blocked, the pigments can accumulate in the blood and cause a yellow staining of the tissues known as *jaundice*. In contrast, the bile salts play a very important role in the digestion of fats. Because fats are insoluble in water, they enter the intestine as drops within the watery chyme. The bile salts, which are partly lipid-soluble and partly water-soluble, work like detergents, dispersing the large drops of fat into a fine suspension of smaller droplets. This emulsification process

The pancreas and bile duct empty into the duodenum. The pancreas secretes pancreatic juice into the pancreatic duct. The pancreatic islets of Langerhans secrete hormones into the blood; α -cells secrete glucagon and β -cells secrete insulin.

produces a greater surface area of fat upon which the lipase enzymes can act, and thus allows the digestion of fat to proceed more rapidly. After it is produced in the liver, bile is stored and concentrated in the gallbladder. The arrival of fatty food in the duodenum triggers a neural and endocrine reflex that stimulates the gallbladder to contract, causing bile to be transported through the common bile duct and injected into the duodenum. If the bile duct is blocked by a *gallstone* (formed from a hardened precipitate of cholesterol), contraction of the gallbladder will cause pain generally felt under the right scapula (shoulder blade).

Some Important Tables

Table 51.1 Digestive Enzymes

Location	Enzymes	Substrates	Digestion Products
Salivary glands	Amylase	Starch, glycogen	Disaccharides
Stomach	Pepsin	Proteins	Short peptides
Small intestine (brush border)	Peptidases	Short peptides	Amino acids
	Nucleases	DNA, RNA	Sugars, nucleic acid bases
	Lactase, maltase, sucrase	Disaccharides	Monosaccharides
Pancreas	Lipase	Triglycerides	Fatty acids, glycerol
	Trypsin, chymotrypsin	Proteins	Peptides
	DNase	DNA	Nucleotides
	RNase	RNA	Nucleotides

Table 51.2 Hormones of Digestion

Hormone	Class	Source	Stimulus	Action	Note
Gastrin	Polypeptide	Pyloric portion of stomach	Entry of food into stomach	Stimulates secretion of HCl and pepsinogen by stomach	Unusual in that it acts on same organ that secretes it
Cholecystokinin	Polypeptide	Duodenum	Fatty chyme in duodenum	Stimulates gallbladder contraction and secretion of digestive enzymes by pancreas	Structurally similar to gastrin
Gastric inhibitory peptide	Polypeptide	Duodenum	Fatty chyme in duodenum	Inhibits stomach emptying	Also stimulates insulin secretion
Secretin	Polypeptide	Duodenum	Acidic chyme in duodenum	Stimulates secretion of bicarbonate by pancreas	The first hormone to be discovered (1902)

Table 51.3 Major Vitamins

Vitamin	Function	Source	Deficiency Symptoms
Vitamin A (retinol)	Used in making visual pigments, maintenance of epithelial tissues	Green vegetables, milk products, liver	Night blindness, flaky skin
B-complex vitamins			
B ₁	Coenzyme in CO ₂ removal during cellular respiration	Meat, grains, legumes	Beriberi, weakening of heart, edema
B ₂ (riboflavin)	Part of coenzymes FAD and FMN, which play metabolic roles	Many different kinds of foods	Inflammation and breakdown of skin, eye irritation
B ₃ (niacin)	Part of coenzymes NAD ⁺ and NADP ⁺	Liver, lean meats, grains	Pellagra, inflammation of nerves, mental disorders
B ₅ (pantothenic acid)	Part of coenzyme-A, a key connection between carbohydrate and fat metabolism	Many different kinds of foods	Rare: fatigue, loss of coordination
B ₆ (pyridoxine)	Coenzyme in many phases of amino acid metabolism	Cereals, vegetables, meats	Anemia, convulsions, irritability
B ₁₂ (cyanocobalamin)	Coenzyme in the production of nucleic acids	Red meats, dairy products	Pernicious anemia
Biotin	Coenzyme in fat synthesis and amino acid metabolism	Meat, vegetables	Rare: depression, nausea
Folic acid	Coenzyme in amino acid and nucleic acid metabolism	Green vegetables	Anemia, diarrhea
Vitamin C	Important in forming collagen, cement of bone, teeth, connective tissue of blood vessels; may help maintain resistance to infection	Fruit, green leafy vegetables	Scurvy, breakdown of skin, blood vessels
Vitamin D (calciferol)	Increases absorption of calcium and promotes bone formation	Dairy products, cod liver oil	Rickets, bone deformities
Vitamin E (tocopherol)	Protects fatty acids and cell membranes from oxidation	Margarine, seeds, green leafy vegetables	Rare
Vitamin K	Essential to blood clotting	Green leafy vegetables	Severe bleeding